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Clustering and phase resetting in a chain of bistable nonisochronous oscillators
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We consider a chain with many locally coupled bistable nonisochronous oscillators. We show that on the
‘‘background’’ of a disordered amplitude distribution either phase or frequency clusters form in the chain.
Cluster location varies according to the amplitude distribution. In the case of frequency clusters their interac-
tion leads to phase resetting in an isolated oscillator located between two neighboring frequency clusters.
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I. INTRODUCTION

Clustering, i.e., formation of groups of elements w
identical~or almost identical! properties~amplitudes, phases
or frequencies! is an important phenomenon in nature.
particular, in neurophysiology, recent experimental data
the activity of the visual cortex of cats and monkeys@1#
show that stimulation of the retina by a pattern leads to
herent, synchronous firing of spatially separated neuro
These neurons form coherent zones~clusters!. Different vi-
sual objects excite different zones. Inside each zone osc
tions of neurons are synchronous, while oscillations fr
different clusters are not synchronized among themsel
Coherence in a cluster and time-binding of different alb
related clusters seems to underlie perception and proces
of the information by the brain@2,3#.

Neural networks in nature are extremely complex for
mathematical description, hence, there is the need for c
sidering rather simple models to understand or explain
various features of brain activity@4#. For example, it is
known that formation of clusters occurs in network syste
with global coupling between elements@5–9#, in systems
with pulse-coupled oscillators having time delays@10#, in
time-delayed nearest-neighbor coupled phase oscilla
@11#, in stochastically coupled networks@12#, in systems of
locally interacting phase oscillators@13,14#, etc. Here we
study cluster formation in a chain of locally coupled~nearest
neighbors! bistable oscillators. Such a model may be use
to describe the phenomena of time binding of several s
tially divided visual images. Each image will fire its ow
group of oscillators. In our model an individual neuron m
be in two modes: at rest or periodically oscillating~limit
cycle! @15#. We prove that stable phase and frequency cl
ters can exist in a system with diffusive coupling provid
two basic conditions are fulfilled. These conditions are:

~i! The amplitude distribution is chaotic along the chai
~ii ! Each unit of the chain is anonisochronousoscillator,
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i.e., the oscillation frequency of each unit depends on
amplitude@16#.

Note that for cluster formation these conditions must
simultaneously satisfied. For example, if a chain consists
isochronous self-excited units, then formation of~phase!
clusters is a transient process only@17,18#. After clusters
form, their interaction is self-destructive, leading to in-pha
oscillations along the chain.

To illustrate the phenomena just described, let us cons
an oscillator obeying the equations in polar coordinates,

ṙ 5rF ~r !,
~1!

ẇ5v~r !,

where r, w are the oscillation amplitude and phase, resp
tively, v(r )5ar 2 is the angular frequency of oscillations
which depends on its amplitude, andrF (r ) is a nonlinear
function having three zeros~Fig. 1!. Equations~1! describe a
bistable, nonisochronous oscillator that can be either at
~stable steady state! or in the oscillatory state~stable limit
cycle!. Then for a chain consisting ofN oscillators with dif-
fusive nearest-neighbor coupling the equations are

żj5zj@F~ uzj u!1 iv~ uzj u!#1d~zj 2122zj1zj 11!,

j 51,2, . . . ,N, z05z1 , zN115zN , ~2!

FIG. 1. Function characterizing the dynamics of a bistable u
or element in the chain. Units are arbitrary.
5742 © 1998 The American Physical Society



a
m
ve
s
ar
ks

to
r-
g
s
ca
o-

ro

an
e

r-
a

or

a
ci
a
v

f
or

i
e

e
w
n
om
ul

es

e

tial

and

e-

red

d
tial

of
two
age

the
se

iffer-
rs

the
a

in
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wherezj5r je
iw j andd accounts for thelocal diffusive cou-

pling between oscillators~d is real and positive!. The indexj
stands for the variables of thej th unit of the chain.

The model~2! belongs to a class of weakly coupled sp
tially distributed oscillatory systems. Spatiotemporal dyna
ics of such chains and lattices have been discussed by se
authors. The dynamics of networks where each site ha
limit cycle oscillator~in our case it depends on the nonline
function F! can be reduced to the investigation of networ
of phase oscillators@19#. In Ref. @20# the investigation of
phase waves has been carried out in a chain of oscilla
when the attractor is in a limit cycle close to a Hopf bifu
cation. In Ref.@13# it was shown that a model of interactin
phase oscillators with random intrinsic frequencies show
spongelike cluster structure. The estimation of the criti
dimension of ad-dimensional lattice necessary for macr
scopic mutual entrainment was obtained in@21#. The influ-
ence of coupling schemes in two-dimensional~2D! lattices
of phase oscillators with random intrinsic frequencies on
bust phase locking oscillations was investigated in@22#. It
was found that sparse coupling leads to a more rapid
robust phase locking than nearest-neighbor coupling. In R
@14# mutual entrainment in lattices with nonvariational inte
action was discussed. Many other publications exist that
devoted to the study of the evolution of phase oscillat
with global coupling~see, for example,@5–9,23#, and refer-
ences therein!.

The behavior of systems of multistable oscillators@in our
case it corresponds to a nonlinear functionrF (r ) having
more than two zeros# or with spatially nonuniform units is
not as frequently investigated. For instance, in@24# the
propagation of fronts in a chain of bistable oscillators w
considered. The criterion for the existence of localized os
lations, so-called discrete breathers in a network where e
site has an equilibrium or steady state and some sites ha
limit cycle, was formulated in@25#. Domains of existence o
spatial chaos for 1D and 2D networks of bistable oscillat
were found in@17# and @18#, respectively.

In Sec. II we deal with the existence of spatial chaos
the distribution of amplitudes along the chain. In Sec. III w
consider the chain~2! with units weakly nonisochronous. W
show how stable phase clusters form. Then in Sec. IV
show how frequency clusters are produced when the u
are drastically nonisochronous. We also study the phen
enon of phase resetting. In Sec. V we summarize our res

II. AMPLITUDE DISTRIBUTION ALONG THE CHAIN

It is shown in the Appendix that for parameter valu
belonging to a certain regionDch @see inequality~A5!# in the
phase space of the system~2! there are 2N invariant domains.
Figure 2 illustrates the region,Dch, corresponding to the
choiceF(r )522ar41ar221. These invariant domains ar
intersections of the following regions:

Vj
05$0<r j<b0 , 0<r k<B, ;k, kÞ j %,

Vj
15$b1<r j<B, 0<r k<B, ;k, kÞ j %, ~3!

whereb0 , b1 , andB are certain constants that depend ond
and the specific nonlinear functionF(r ). The vector field of
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the system~2! at the boundary of the regionsVj
0 and Vj

1 is
oriented toward these regions. Consequently, if the ini
amplitudes,$r j (0)%, belong to the regionsVj

0 or Vj
1, then the

$r j (t)% are located, remain forever inside these regions,
remain small (Vj

0) or large (Vj
1). Thus, for points of the

parameter regionDch there exist at least 2N different distri-
butions of the amplitudes of oscillations along the chain~2!.
Since each distribution can be ‘‘coded’’ by an arbitrary s
quence of two symbols@17# the distribution of the ampli-
tudes can be very diverse, including regular and disorde
spatially chaotic distributions.

III. PHASE CLUSTERS

Let us first start witha small enough. To get a disordere
amplitude distribution along the chain we choose the ini
amplitudes,$r j (0)%, from eitherVj

0 or Vj
1. The initial phases

are randomly distributed in the range@2p,p#. The numerical
integration of ~2! shows that the process of formation
stationary amplitude and phase distributions occurs in
stages with different time scales. First, there is a short st
at which the equilibrium amplitude distribution~r j5r j

0,
wherer j

0 are constants! is formed@Fig. 3~a!#. Then, slowly,
phase clusters form along the chain@Figs. 3~b! and 3~c!#. The
number and spatial location of clusters are determined by
former amplitude distribution. The chain splits into pha
clusters at the sites of gaps in the amplitude distribution~i.e.,
at the sites where oscillation amplitudes,r j , are small!. In
Fig. 3~b! three phase clusters are shown: PC1~oscillators at
sites 1–10!, PC2~oscillators at sites 12–27!, PC3~oscillators
at sites 28–36!, and one oscillator~at site 11! that does not
belong to these clusters. Inside each cluster, the phase d
ences,c j5w j 112w j.0, are very small but between cluste
there are sharp jumps in phase, i.e.,c10, c11, andc27 are
nonzero constants.

As in the chain a phase cluster mode corresponds to
quantitiesr j , c j being constant, then it corresponds to
steady state in the phase space of the system~A1!. From the
equations for the phase differences, sincj , we have a system
of (N21) linear equations. Its solution is

sin c j5

aS (
i 51

j

r i
23 (

i 5 j 11

N

r i
42 (

i 5 j 11

N

r i
23(

i 51

j

r i
4D

dr j 11r j(
i 51

N

r i
2

. ~4!

FIG. 2. Domain,Dch, of the amplitude disorder along the cha
for rF (r )522ar51ar32r . Quantities are dimensionless.
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From ~4! it follows that the differences in phase betwe
neighboring oscillators are proportional toa/d and depend
on the chosen distribution of amplitudes. As sincj
;a(drjr j11)

21 the sharp phase jump between neighbor
oscillators can be observed in positions where gaps in am
tude distribution appear, i.e., whenr j , r j 11 have low values,
hence the splitting of the chain into phase clusters. Fig
3~a! shows three such gaps where the amplitudes of ne
boring oscillators,r j , r j 11 , are small. They appear at site
10, 11, 12, at sites 27, 28, and at sites 33–36. In Fig. 3~b! we
see that there is a small phase shift between clusters in
cillators at sites 27, 28. The largest phase shifts are obse
between oscillators at sites 10, 11 and 11, 12@Fig. 3~b!#. This
comes from the fact that the values (r 10r 11) and (r 11r 12) are
much smaller than (r 27r 28). The lack of splitting into clusters
in the gap at sites 33–36 is due to the compensation of
sums contained in Eq.~4!. Thus, although the distribution o
amplitudes and phases along the chain is rather complex
the frequency of each unit, taken separately, depends o
amplitude, phase clustering appears.

IV. FREQUENCY CLUSTERS AND PHASE RESETTING

A. Clustering and phase resetting

Let us now considera large enough, e.g., so large th
phase clusters cannot be maintained in the chain. As in
preceding section, we choose initial conditions for amp
tudes $r j% belonging to the regionsVj

0 or Vj
1. Numerical

simulations show that after a transient stage a certain di
bution of amplitudes along the chain is established. In t
case the amplitudes are not constants, but they are bou
and remain inside the regionsVj

0, Vj
1. Figure 4~a! is a snap-

FIG. 3. Formation of phase clusters~a50.0018, d50.08, a
512!. ~a! Final amplitude distribution,~b! snapshot of the distribu
tion of phases along the chain,~c! phase differences (c j5w j 11

2w j ) vs time. Quantities are dimensionless.
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shot of the amplitude distribution along the chain. It is ve
similar to the stationary amplitude distribution shown in F
3~a!.

Let us now consider the behavior of phases of the os
lators and their frequenciesv j5ẇ j . Figure 4~b! shows the
behavior of the instantaneous frequencies of oscillations.
formation of three groups of such instantaneous frequen
is a characteristic property of the chain in this case@Fig.
4~b!#. Each frequency group has a different number of os
lators. For each of these groups an average frequency ca
defined. Figure 4~c! shows the distribution of average fre
quencies along the chain. We see that the chain splits
three frequency clusters: FC1~oscillators at sites 1–10!, FC2
~oscillators at sites 12–27!, FC3 ~oscillators at sites 28–36!,
and one isolated oscillator at site 11~further, we call itS!.
Let us denote the average frequencies of FC1, FC2, and
with V1 , V2 , andV3 , respectively. Note that in each fre
quency cluster there are oscillators with low and high am

FIG. 4. Formation of frequency clusters~a50.1, d50.08, a
512!. ~a! Snapshot of the amplitude distribution,~b! instantaneous
frequencies@v j (t)5ẇ j # vs time, ~c! average frequency along th
chain. Quantities are dimensionless.
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tudes of oscillations. Comparing Figs. 3~b! and 4~c! we see
that splitting into clusters takes place in the same spots b
in phase and in frequency cases, namely, where ampli
gaps exist~at sites 10–12 and 27, 28!. Thus, basically, clus-
ter formation in the chain is a similar process for phase c
ters and frequency clusters.

Let us now investigate the behavior of the oscillatorS in
further detail. The time evolution of amplituder 11(t), of
phasew11(t), and of frequencyv11(t) are shown in Figs.
5~a!, 5~b!, and 5~c!, respectively. From time to time the func
tion r 11(t) vanishes@Fig. 5~a!#. At these instants of time we
see very short peak singularities in the time dynamics of
instantaneous frequencyv11 @see Fig. 5~c!#. Simultaneously,
phasew11(t) jumps of p occur @arrow on Fig. 5~b!#. Then
there isphase resettingin the chain@26#. Phase resetting is
the result of the complex collective dynamics of the cha
During the time evolution three different populations of o
cillators ~frequency clusters! are formed in the chain. The
oscillatorS is affected by these clusters. FC1 and FC2 try
‘‘enslave’’ this isolated element. In such a competition pr
cess none of the clusters is a winner. The oscillatorS keeps
its average frequency. However, from time to time it

FIG. 5. Phase resetting. All conditions correspond to the form
tion of frequency clusters~Fig. 4!. ~a! Amplitude of oscillation at
site ~11! vs time, ~b! phase resetting process for oscillator at s
~11! ~a different time scale was used!, ~c! instantaneous frequenc
of oscillations at site~11! vs time, singularities of frequency. Quan
tities are dimensionless.
th
de

-

e
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forced to change its phase by a valuep, so that the parity
between clusters FC1 and FC2 is maintained.

B. Phenomenological model of phase resetting

Let us consider oscillators belonging to the frequen
cluster FC1 as a single element that rotates with ang
frequencyV1 , and the oscillators belonging to FC2 as a
other element with frequencyV2 . They are independent an
act on oscillatorS. Comparing Figs. 4~b! and 5~c! we see that
the instantaneous frequency of the oscillatorS is between the
frequencies of FC1 and FC2. Let the frequency of the os
lator SbeVs5(V21V1)/2. Let us further consider the cas
of equality of initial phases of clusters and of the oscillatorS.
Moreover, since the amplitude of oscillations ofS is small
we expand the nonlinear functionrF (r ) and omit all terms
beyond first order, hencerF (r )'2r . Then, from Eqs.~A1!
we get a single equation describing the time evolution of
amplitude ofS,

ṙ 52~112d!r 1d~R11R2!cos
V22V1

2
t, ~5!

whereR1 andR2 are constants characterizing the interacti
between the clusters and the oscillatorS. Equation~5! is a
linear ordinary differential equation whose solution is

r ~ t !5Ce2gt1
d~R11R2!

~DV!21g2 ~g cosDVt1DV sin DVt !,

~6!

whereC is an arbitrary constant,DV5(V22V1)/2, andg
5112d. From ~6! it follows that r (t) is a function that
almost periodically reaches zero and, eventually, reverse
sign. As r (t) corresponds to the amplitude of oscillation
the oscillatorS, inversion of the sign corresponds to ap
change in the phase of oscillations in the oscillatorS, hence,
phase resetting. The period,T, between successive zeros
the functionr (t) can be estimated from~6!,

T5
2p

V22V1
. ~7!

Taking the values ofV1 andV2 from Figs. 4~c! to ~7! we get
T>1.93104. This value agrees satisfactorily with the perio
of frequency peaks observed in Fig. 5~c!.

V. CONCLUSION

We have investigated processes of formation of phase
frequency clusters that may be relevant to understanding
sic features of synchronization of neuron oscillations in br
activity. Coexistence of chaos and order is fundamenta
the dynamics of a chain of many locally, diffusively couple
bistable nonisochronous oscillators. Indeed, if the amplitu
distribution of oscillations along the spatial coordinatej is
chaotic, then such a distribution can be thebackgroundfor
clustering. In spite of spatially chaotic amplitudes, the os
lators take on regular temporal patterns:phaseandfrequency
clusters. Choosing definite initial conditions for amplitude
of oscillations from domainsVj

0 or Vj
1 we can prescribe a

given final distribution ofr j , which in turn determines spa

-
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tial areas of synchronous oscillations. In other words,
stimulation of various oscillating neurons results in the f
mation of synchronous zones appropriate for an initial p
terned stimulus. We note that as the zone sites are define
amplitude distribution, it is stable to rather large perturb
tions, and can be changed by the action of a new stimu
which will transfer the system to another invariant domai

In addition, we have found that the competition betwe
frequency clusters is the basis for the phenomenon ofphase
resetting. It appears when two conditions are fulfilled:~i!
There are two~or more! frequency clusters in the chain, an
~ii ! a single oscillator appears isolated between them. Clu
competition yields jumps ofp in the phase of the isolate
oscillator.

Finally, we have recently learned about the experimen
work by Llinás and Yarom@27# on the oscillatory properties
of guinea-pig inferior olivary~i.o.! neurons. They showed
that in vitro andin vivo i.o. neurons possess intrinsic mech
nisms which allow them to function on the one hand as
tonomous oscillators and on the other hand as a synchron
neuronal ensemble. They also showed that i.o. neur
change their oscillatory behavior in the presence of cer
pharmacological substances. Their data reflect the prope
of a large number of coupled units. In particular, their F
5~D! @27# shows a case of phase resetting in perfect ag
ment with one of our findings, Fig. 5~b!.
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APPENDIX: CONSTRUCTION OF INVARIANT DOMAINS

Let us take Eqs.~2! using amplitudes and phase shif
(c j5w j 112w j ):

ṙ j5r jF~r j !1d~r j 21cosc j 2122r j1r j 11cosc j !,

r kr k11ċk5r kr k11@v~r k11!2v~r k!#1d„r kr k12sin ck11

2~r k
21r k11

2 !sin ck1r k11r k21sinck21…,

j 51,2, . . . ,N, k51,2, . . . ,N21,

r 05r 1 , r N115r N , c050, cN50. ~A1!

1. Location of the bounded solutions {rj(t)} in the phase space

Let us consider in the phase space of the system~A1! the
following regions:

VB5$r : 0<r j<B, j 51,2,...,N%,
e
-
t-
by
-
s

n

er

al

-
-
ed
ns
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.
e-

.
n-
er

.

whereB is a parameter. From~A1! and the form ofrF (r )
~Fig. 1! it follows that at B.a3 on the boundary of each
regionVB the vector field of~A1! points intoVB . Now we
consider the orientation of the vector field on the surfa
$r j50%. As for r j50 the value of the phasew j is left unde-
termined; we takew j such that

ṙ j ur j 505d~r j 21cosc j 211r j 11cosc j !>0. ~A2!

Hence, the vector field of the system~A1! is brought inside
VB and all bounded solutions$r j (t)% are located in the re-
gion VB , whereB5a3 .

2. Invariant domains

Following the method discussed in@18# we construct in
the phase space of the system~A1! a family of narrower
invariant domains. For this purpose we consider the orien
tion of the vector field of~A1! on surfaces$r k5c%, where
c5const,a3. From ~A1! we obtain

ṙ kur k5c5cF~c!1d~r k21cosck2122c1r k11cosck!.
~A3!

Let us demand that

ṙ kur k5c
,0 for r jPVB , ; jÞk. ~A4!

This condition is satisfied for the parameter region,Dch,
defined by the inequality

Dch5H d,minS r maxF~r max!

2~a31r max!
,

ur minF~r min!u
2~a32r min!

D J , ~A5!

where r min,max are coordinates of the minimum and of th
maximum of rF (r ). In this casec5b0 , where b0 is the
smallest root of the equation

cF~c!22d~c2a3!50. ~A6!

Similarly, for points ofDch the inequality

ṙ kur k5c
.0 for r jPVB , ; j Þk ~A7!

is satisfied whenc5b1 , whereb1 is the largest root of the
equation

cF~c!22d~c1a3!50. ~A8!

Using the surfaces$r k5b0%, $r k5b1%, and the boundary of
the domainVB , we can introduce domainsVj

0 and Vj
1 @see

Eq. ~3!#. Then the vector field of the system~A1! at the
border of the regionsVj

0, Vj
1 is oriented toward these region

Thus, for the points of the parameter regionDch there exist
2N invariant domains that are intersections of the doma
Vj

0, Vj
1.
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