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Clustering and phase resetting in a chain of bistable nonisochronous oscillators
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We consider a chain with many locally coupled bistable nonisochronous oscillators. We show that on the
“background” of a disordered amplitude distribution either phase or frequency clusters form in the chain.
Cluster location varies according to the amplitude distribution. In the case of frequency clusters their interac-
tion leads to phase resetting in an isolated oscillator located between two neighboring frequency clusters.
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I. INTRODUCTION i.e., the oscillation frequency of each unit depends on its
amplitude[16].
Clustering, i.e., formation of groups of elements with _ -

identical (or almost identicalpropertiesamplitudes, phases, ~ Note that for cluster formation these conditions must be
or frequenciesis an important phenomenon in nature. In simultaneously satisfied. For example, if a chain consists of
particular, in neurophysiology, recent experimental data orsochronous self-excited units, then formation (@hase
the activity of the visual cortex of cats and monkdylg  Clusters is a transient process only7,18. After clusters
show that stimulation of the retina by a pattern leads to coform, their interaction is self-destructive, leading to in-phase
herent, synchronous firing of spatially separated neurongscillations along the chain. _ _
These neurons form coherent zorekusters. Different vi- To illustrate the phenomena just described, let us consider
sual objects excite different zones. Inside each zone oscill@" oscillator obeying the equations in polar coordinates,

tions of neurons are synchronous, while oscillations from

different clusters are not synchronized among themselves. r=rF(r),
Coherence in a cluster and time-binding of different albeit (1)
related clusters seems to underlie perception and processing e=w(r),

of the information by the braif2,3].

Neural networks in nature are extremely complex for thewherer, ¢ are the oscillation amplitude and phase, respec-

mathematical description, hence, there is the need for COQTver, o(r)=ar? is the angular frequency of oscillations,

sidering rather simple models to understand or explain th@vhich depends on its amplitude, ang (r) is a nonlinear

\léanous kl:eatfures of br?lnl activity4]. For exampli, It IS function having three zera&ig. 1). Equations1) describe a
nown that formation of clusters occurs in networ Systemsoistable, nonisochronous oscillator that can be either at rest

W?tﬂ glolbal cou?ligg bglt;/veen ﬁ'emenﬁ—%d‘”l systems (stable steady stater in the oscillatory statéstable limit
with pulse-coupled oscillators having time deldy#d], in  cyoie) Then for a chain consisting ®f oscillators with dif-

time-delayed nearest-neighbor coupled phase oscillator sive nearest-neighbor coupling the equations are
[11], in stochastically coupled network42], in systems of g Ping q

locally interacting phase oscillatofd.3,14), etc. Here we
study cluster formation in a chain of locally coupl@tkarest
neighbor$ bistable oscillators. Such a model may be useful

z=z[F(lz)+io(z])]+d(z-1—27+7.1),

to describe the phenomena of time binding of several spa- =12,...N, 2=z, 2zZy+172y, (2
tially divided visual images. Each image will fire its own
group of oscillators. In our model an individual neuron may rF(r)

be in two modes: at rest or periodically oscillatiigmit
cycle) [15]. We prove that stable phase and frequency clus-
ters can exist in a system with diffusive coupling provided
two basic conditions are fulfilled. These conditions are: r
(i) The amplitude distribution is chaotic along the chain. a, a,
(ii) Each unit of the chain is aonisochronou®scillator,

*Electronic address: nekorkin@rf.unn.runnet.ru
"Electronic address: makarov@hale.appl.sci-nnov.ru FIG. 1. Function characterizing the dynamics of a bistable unit
*Electronic address: mvelarde@eucmax.sim.ucm.es or element in the chain. Units are arbitrary.
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wherezjzrjei‘PJ andd accounts for théocal diffusive cou- 0.15
pling between oscillatord is real and positive The indexj d
stands for the variables of thj¢h unit of the chain. 0-121
The model(2) belongs to a class of weakly coupled spa-
tially distributed oscillatory systems. Spatiotemporal dynam- 0-094
ics of such chains and lattices have been discussed by several
authors. The dynamics of networks where each site has a 0067 Dh
limit cycle oscillator(in our case it depends on the nonlinear ¢
function F) can be reduced to the investigation of networks 0-034
of phase oscillator$19]. In Ref. [20] the investigation of a
phase waves has been carried out in a chain of oscillators 0-00— NV VY

when the attractor is in a limit cycle close to a Hopf bifur-  FiG. 2. DomainD,, of the amplitude disorder along the chain
cation. In Ref[13] it was shown that a model of interacting for rF(r)= —2ar5+ar3—r. Quantities are dimensionless.
phase oscillators with random intrinsic frequencies shows a

spongelike cluster structure. The estimation of the criticakne system(2) at the boundary of the regiomg-o and V! is
dimension of ad-dimensional lattice necessary for macro- gjented toward these regions. Consequently, if the initial
scopic mutual entrainment was obtained 1]. The influ- amplitudes{r;(0)}, belong to the region\s’? oerl, then the

ence of coup_lmg sche_:mes n twq-d|_me_n3|o(@iD) Ia_ttlces {rj(t)} are located, remain forever inside these regions, and
of phase oscillators with random intrinsic frequencies on ro-

. el . . remain small ¥°) or large (). Thus, for points of the
Al. Ny L) ' . .
bust phase locking oscillations was investigatedaa]. It Earameter regio 4, there exist at least™2different distri-

was found that sparse coupling leads to a more rapid angd”. . S
robust phase locking than nearest-neighbor coupling. In Re ytlons of the' ampllt.udes of osc‘|‘llat|ons” along the pk(@)a
ince each distribution can be “coded” by an arbitrary se-

[14] mutual entrainment in lattices with nonvariational inter- AR .
action was discussed. Many other publications exist that ar: uence of two symbolﬁl?] Fhe d'.Str'bUt'on of the ?‘mp"'
udes can be very diverse, including regular and disordered

devoted to the study of the evolution of phase oscillator
with global coupling(see, for exampld5-9,23, and refer-
ences therein

The behavior of systems of multistable oscillatfirsour Il. PHASE CLUSTERS
case it corresponds to a nonlinear functidh(r) having
more than two zerdsor with spatially nonuniform units is
not as frequently investigated. For instance, [B¥] the

spatially chaotic distributions.

Let us first start withw small enough. To get a disordered
amplitude distribution along the chain we choose the initial

propagation of fronts in a chain of bistable oscillators Wasamplltuges;{lrj((j(.))},_t:‘ron;glthﬁrV- or V. Th?”znltlal phqseT
considered. The criterion for the existence of localized oscil&€ randomly istributed in the ranfie m,m]. The numerica

lations, so-called discrete breathers in a network where eadRteégration of (2) shows that the process of formation of

site has an equilibrium or steady state and some sites haveSiationary amplitude and phase distributions occurs in two

limit cycle, was formulated ifi25]. Domains of existence of Stages with different time scales. First, there is a siorg stage
spatial chaos for 1D and 2D networks of bistable oscillator<t Wh'coh the equilibrium amplitude distributiofr;=r,
were found in[17] and[18], respectively. wherer; are constanjsis formed[Flg. 3@]. Then, slowly,

In Sec. Il we deal with the existence of spatial chaos inPhase clusters form along the chéiffigs. 3b) and 3c)]. The
the distribution of amplitudes along the chain. In Sec. Il wehumber and spatial location of clusters are determined by the
consider the chaif2) with units weakly nonisochronous. we former amplitude distribution. The chain splits into phase
show how stable phase clusters form. Then in Sec. IV wélusters at the sites of gaps in the amplitude distributien,
show how frequency clusters are produced when the unit8t the sites where oscillation amplitudes, are small. In
are drastically nonisochronous. We also study the phenonfig. 3(b) three phase clusters are shown: R@4cillators at

enon of phase resetting. In Sec. V we summarize our result§ites 1-10, PC2(oscillators at sites 12—-27PC3(oscillators
at sites 28—3f% and one oscillatofat site 1) that does not

belong to these clusters. Inside each cluster, the phase differ-
encesy;=¢j 1~ ¢;=0, are very small but between clusters

It is shown in the Appendix that for parameter valuesthere are sharp jumps in phase, i@, 11, andy,; are
belonging to a certain regidD, [see inequalitfA5)] in the ~ nonzero constants.
phase space of the systé#) there are ¥ invariant domains. As in the chain a phase cluster mode corresponds to the
Figure 2 illustrates the regiorD.,, corresponding to the quantitiesr;, ¢; being constant, then it corresponds to a
choiceF(r)= —2ar*+ar?—1. These invariant domains are steady state in the phase space of the sysfet\ From the
intersections of the following regions: equations for the phase differences, gjipwe have a system
of (N—1) linear equations. Its solution is

Il. AMPLITUDE DISTRIBUTION ALONG THE CHAIN

V?:{Ogrjsboy O=r =B, YKk, kqﬁj}’

N N
2 4_ 2 4
Vi={b;<r;<B, 0<r<B, Vk k#j}, (3 _ @ ;1 i Xizjzﬂ Fi i:jEH i X; i
sin ¢;= N (4)
wherebg, b;, andB are certain constants that dependdn drj+1rjz fi2

and the specific nonlinear functidf(r). The vector field of i=1
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FIG. 3. Formation of phase clustef&=0.0018,d=0.08, a
=12). (a) Final amplitude distribution(b) snapshot of the distribu-
tion of phases along the chaifc) phase differencesyf=¢;.
—¢j) Vs time. Quantities are dimensionless.

From (4) it follows that the differences in phase between
neighboring oscillators are proportional égdd and depend
on the chosen distribution of amplitudes. As gjn
~a(drjrj+1)‘1 the sharp phase jump between neighboring
oscillators can be observed in positions where gaps in ampli
tude distribution appear, i.e., whep, r; ; have low values,
hence the splitting of the chain into phase clusters. Figure
3(a) shows three such gaps where the amplitudes of neigh
boring oscillatorsy;, r;,,, are small. They appear at sites

0.0

average frequency

8.0x10°

0.03925 4

0.03900 4

0.03875

T
6

T T y
12 18 24

oscillator site

©

10, 11, 12, at sites 27, 28, and at sites 33—36. In Rig.8e )

see that there is a small phase shift between clusters in os- F!CG- 4. Formation of frequency clusteta=0.1,d=0.08, a
cillators at sites 27, 28. The largest phase shifts are observ?:dlz)' (@) Snapshot of the amplitude distributicih) instantaneous
between oscillators at sites 10, 11 and 11{Ai3. 3b)]. This  "equenciedw;(t)=¢;] vs time, (c) average frequency along the
comes from the fact that the valuasdr1,) and (441, are chain. Quantities are dimensionless.

much smaller thanresr »g) . The lack of splitting into clusters gt of the amplitude distribution along the chain. It is very

in the gap at sites 33—36 is due to the compensation of theimijar to the stationary amplitude distribution shown in Fig.
sums contained in Eq4). Thus, although the distribution of g a).

amplitudes and phases along the chain is rather complex an
the frequency of each unit, taken separately,
amplitude, phase clustering appears.

Y Let us now consider the behavior of phases of the oscil-
depends on ifgtors and their frequencies; = ¢; . Figure 4b) shows the
behavior of the instantaneous frequencies of oscillations. The
formation of three groups of such instantaneous frequencies
is a characteristic property of the chain in this cébe.
4(b)]. Each frequency group has a different number of oscil-
lators. For each of these groups an average frequency can be
Let us now consider large enough, e.g., so large that defined. Figure &) shows the distribution of average fre-
phase clusters cannot be maintained in the chain. As in thguencies along the chain. We see that the chain splits into
preceding section, we choose initial conditions for ampli-three frequency clusters: FGascillators at sites 1—10FC2
tudes{r;} belonging to the regionS/? or le- Numerical  (oscillators at sites 12—27FC3 (oscillators at sites 28—36
simulations show that after a transient stage a certain distriand one isolated oscillator at site {further, we call itS).
bution of amplitudes along the chain is established. In thid et us denote the average frequencies of FC1, FC2, and FC3
case the amplitudes are not constants, but they are boundagth (,, Q,, andQ 4, respectively. Note that in each fre-
and remain inside the regioMf, Vl-l. Figure 4a) is a snap- quency cluster there are oscillators with low and high ampli-

IV. FREQUENCY CLUSTERS AND PHASE RESETTING

A. Clustering and phase resetting
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0008 forced to change its phase by a valae so that the parity
between clusters FC1 and FC2 is maintained.

0.004 B. Phenomenological model of phase resetting

Let us consider oscillators belonging to the frequency
6,000 cluster FC1 as a single element that rotates with angular
¢ frequency(),, and the oscillators belonging to FC2 as an-
T y T y T T other element with frequend®,. They are independent and
o0 2.0x10° 400" 6.0x10" 8.0x10° act on oscillatoS. Comparing Figs. é) and 5c) we see that

@ the instantaneous frequency of the oscill&ds between the

n frequencies of FC1 and FC2. Let the frequency of the oscil-
lator Sbe Q)= (Q5,+Q4)/2. Let us further consider the case
of equality of initial phases of clusters and of the oscilla@or
Moreover, since the amplitude of oscillations $fis small

we expand the nonlinear functiom (r) and omit all terms
beyond first order, henad-(r)~ —r. Then, from Eqs(Al)

we get a single equation describing the time evolution of the
t amplitude ofS,

- T T T v T T T

58600 58800 59000 59200
®) . 0,-0,

0.0395 r=—(1+2d)r+d(R;+ RZ)COST

tl (5)

whereR; andR, are constants characterizing the interaction
between the clusters and the oscillarEquation(5) is a

0.0390 linear ordinary differential equation whose solution is

_ 4. (Ri+Ry) .
r(t)y=Ce "+ IO (y cosAQt+AQ sin AQt),

T T T T
0.0 2.0x10° 4.0x10* 6.0x10° 8.0x10° (6)

0.0385

(© whereC is an arbitrary constanth Q)= (Q,—Q,)/2, andy
FIG. 5. Phase resetting. All conditions correspond to the forma-= 1+2d. From (6) it follows that r(t) is a function that
tion of frequency clusteréFig. 4). (8) Amplitude of oscillation at almost periodically reaches zero and, eventually, reverses its
site (11) vs time, (b) phase resetting process for oscillator at site Sign. Asr(t) corresponds to the amplitude of oscillation of
(12) (a different time scale was usedc) instantaneous frequency the oscillatorS inversion of the sign corresponds to7a
of oscillations at sité¢11) vs time, singularities of frequency. Quan- change in the phase of oscillations in the oscill&ohence,
tities are dimensionless. phase resettingThe period,T, between successive zeros of
the functionr(t) can be estimated fron®6),

tudes of oscillations. Comparing Figstb3 and 4c) we see o
that splitting into clusters takes place in the same spots both T= a—a. @)
in phase and in frequency cases, namely, where amplitude 273

gaps exis'(at §ites 10_1.2 .and 2.7’.28Thus’ basically, clus- Taking the values of); and(Q, from Figs. 4c) to (7) we get
ter formation in the chain is a similar process for phase clust— 1 g9« 10*. This value agrees satisfactorily with the period

ters and frequency clusters. _ o of frequency peaks observed in Figch
Let us now investigate the behavior of the oscillafin

further detail. The time evolution of amplitudg(t), of
phasegq,(t), and of frequencywq4(t) are shown in Figs.
5(a), 5(b), and Jc), respectively. From time to time the func- ~ We have investigated processes of formation of phase and
tion rq4(t) vanishegFig. 5@)]. At these instants of time we frequency clusters that may be relevant to understanding ba-
see very short peak singularities in the time dynamics of theic features of synchronization of neuron oscillations in brain
instantaneous frequenaey;; [see Fig. §c)]. Simultaneously, activity. Coexistence of chaos and order is fundamental in
phasee;,(t) jumps of = occur[arrow on Fig. %b)]. Then the dynamics of a chain of many locally, diffusively coupled
there isphase resettingn the chain[26]. Phase resetting is bistable nonisochronous oscillators. Indeed, if the amplitude
the result of the complex collective dynamics of the chain.distribution of oscillations along the spatial coordinjtes
During the time evolution three different populations of os-chaotic, then such a distribution can be treckgroundfor
cillators (frequency clustejsare formed in the chain. The clustering. In spite of spatially chaotic amplitudes, the oscil-
oscillatorSis affected by these clusters. FC1 and FC2 try tolators take on regular temporal patterpbaseandfrequency
“enslave” this isolated element. In such a competition pro-clusters Choosing definite initial conditions for amplitudes
cess none of the clusters is a winner. The oscill&&eeps of oscillations from domainS/? or V]-1 we can prescribe a

its average frequency. However, from time to time it isgiven final distribution ofr;, which in turn determines spa-

V. CONCLUSION
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tial areas of synchronous oscillations. In other words, thavhereB is a parameter. FrorfAl) and the form ofrF(r)
stimulation of various oscillating neurons results in the for-(Fig. 1) it follows that atB>a3; on the boundary of each
mation of synchronous zones appropriate for an initial patregionVg the vector field of(Al) points intoVz. Now we
terned stimulus. We note that as the zone sites are defined lopnsider the orientation of the vector field on the surfaces
amplitude distribution, it is stable to rather large perturba-{r;=0}. As forr;=0 the value of the phasg, is left unde-
tions, and can be changed by the action of a new stimulugermined; we takep; such that
which will transfer the system to another invariant domain. .

In addition, we have found that the competition between Ml =0=d(rj—1€0S ¢ _1+T1j;1€08¢;)=0.  (A2)
frequency clusters is the basis for the phenomenophake
resetting It appears when two conditions are fulfilled) Hence, the vector field of the systeil) is brought inside
There are twdgor more frequency clusters in the chain, and Vg and all bounded solution§;(t)} are located in the re-
(i) a single oscillator appears isolated between them. Clustagion Vg, whereB=a,.
competition yields jumps ofr in the phase of the isolated
oscillator.

Finally, we have recently learned about the experimental 2. Invariant domains
work by Llinas and Yaroni27] on the oscillatory properties
of guinea-pig inferior olivary(i.0.) neurons. They showed
thatln vitro andin vivoi.o. neurons possess intrinsic mecha- i, ariant domains. For this purpose we consider the orienta-
nisms which allow them to function on the one hand as ausj,. of the vector field of(AL) on surfacesr =c}, where
tonomous oscillators and on the other hand as a synchronized_ .\« o From (A1) we obtain
neuronal ensemble. They also showed that i.0. neurons 3
change their oscillatory behavior in the presence of certain
pharmacological substances. Their data reflect the properties 'rk‘rkzc=cF(c)+d(rk_1cos Y—1—2C+T 4 1COS ).

Following the method discussed [&8] we construct in
the phase space of the systdil) a family of narrower

of a large number of coupled units. In particular, their Fig. (A3)
5(D) [27] shows a case of phase resetting in perfect agree-
ment with one of our findings, Fig.(B). Let us demand that
i-klr 7C<O for rjEVB, Vlik (A4)
-
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maximum of rE(r). In this casec=by, whereb, is the
smallest root of the equation

rmaxF(rmax) |rminF(rmin)|
2@+ 2<a3—rmm>)]’ (A9

APPENDIX: CONSTRUCTION OF INVARIANT DOMAINS

Let us take Eqs(2) using amplitudes and phase shifts cF(c)—2d(c—a3)=0. (AB)
(Yi=¢jr1— @)
: Similarly, for points ofD, the inequalit
rj=rF(r))+d(rj_1CoS ¢j_1—2r;+r;,1C0S ¥;), y P ch quaity
_ 'rk|r _ >0 for rjeVg, Vj#k (A7)
Ml 1906= Tk 1l (M 1) — @ (M) JHA(rr 4 28in g g ‘
—(rﬁ+ rﬁ+1)sin G+ Fes 1 1SN 1), g;qiz'ilizfrl]ed wherc=Db,, whereb, is the largest root of the

i=12,...N, k=12,...N-1,

cF(c)—2d(c+az)=0. (A8)
ro=ri, rn+1=rns $0=0, ¢n=0. (A1)
Using the surfaceér, =bg}, {r,=b4}, and the boundary of
the domainVg, we can introduce domaing and V| [see
1. Location of the bounded solutions;{t)} in the phase space Eqg. (3)]. Then the vector field of the systef\1) at the
Let us consider in the phase space of the sygieh the ~ border of the regiony?, V]-1 is oriented toward these regions.
following regions: Thus, for the points of the parameter regiog, there exist
2N invariant domains that are intersections of the domains
Vg={r: 0=<r;<B, j=12,.N}, VP, Vi
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